报告名称:Bounding cohomology on a smooth projective surface
报告专家:李思辰
专家所在单位:复旦大学
报告时间:2021年7月7日上午
报告地点:威廉希尔203学术报告厅
专家简介:李思辰,2014年6月本科毕业于威廉希尔中文官方网站,同年9月保送到华东师范大学攻读代数几何方向,师从杜荣教授. 2018年7月获国家留学基金委资助在新加坡国立大学数学系联合培养19个月,去年5月底开始跟随复旦大学数学科学学院陈猛教授从事双有理几何的博士后研究.目前已在Canad.J.Math.,Math. Narch.,Comm. Algebra, Internat. J. Math.等杂志上发表了4篇论文.目前是德国Zentralblatt Math评论员和美国MathSciNet评论员.
报告摘要:The following conjecture arose out of discussions between B. Harbourne, J.Roe, C. Cilberto and R. Miranda: for a smooth projective surface X there exists a positive constant c_X such that h^1(O_X(C)) ≤ c_Xh^0(O_X(C)) for every prime divisor C on X. When the Picard number ρ(X) = 2, we prove that if either the Kodaira dimension κ(X) = 1 and X has a negative curve or X has two negative curves, then this conjecture holds for X.
邀请人:郑大彬
(审稿:郑大彬)