欢迎来到:威廉希尔中文官方网站!

学术报告
当前位置: 网站首页 > 学术报告 > 正文
Anti-Ramsey number for disjoint union of clique and matching in complete graph
作者:      发布时间:2023-04-20       点击数:
报告时间 2023年4月20日15:00 -18:00;19:00-22:00 报告地点 腾讯会议(会议号:419533166; 725285874)
报告人 金泽民

报告名称:Anti-Ramsey number for disjoint union of clique and matching in complete graph

报告专家:金泽民

专家所在单位:浙江师范大学

报告时间:2023年4月20日15:00 -18:00;19:00-22:00

报告地点:腾讯会议(会议号:419533166; 725285874)

专家简介:金泽民,男,浙江师范大学数学科学学院教授,硕士生导师,浙江省高校中青年学科带头人,2005年博士毕业于南开大学组合数学中心。主要研究方向为图论和组合最优化。曾先后主持自然科学基金多项,发表高水平学术论文30余篇。

 

报告摘要:Given an edge-coloring of a graph G, G is said to be rainbow if any two edges of G receive different colors. The anti-Ramsey number AR(G,H) is defined to be the maximum integer k such that there exists a k-edge-coloring of G avoiding rainbow copies of H. The anti-Ramsey problem has been well studied for several graph classes. The researchers focused on the anti-Ramsey problem for some special graph classes including clique, cycle, path, matching etc during the early decades. Gilboa and Roditty (S.Gilboa, Y.Roditty, Anti-Ramsey numbers of graphs with small connected components, Graphs Combin. 32(2)(2016), 649-662) first considered the anti-Ramsey number of graphs with small components, especially graphs including a matching as components. In this talk, we present some results on this topic and report our recent results on the value of anti-Ramsey number of graphs with a matching as components.


版权所有 威廉希尔-威廉希尔体育-中文官方网站

地址:湖北省武汉市武昌区友谊大道368号 邮政编码:430062

Email:stxy@hubu.edu.cn 电话:027-88662127